
ON THE STRUCTURE OF THF. BBGKY HIERARCHY FOR A BOLTZMANN GAS 

R, Goldman 
Xnst i tu te  f o r  F lu id  Dynamics and Applied Mathematics 
Universi ty  of Maryland, College Park,  Maryland 

and 

E. A, Frieman 
Department, of Astrophysical Sciences 

Prince ton Univers i t y  
Princeton,  New Jersey  

ABSTRACT 

We treat the  evolut ion in .  time of a s p a t i a l l y  uniform Boltzmann gas 

with no i n i t i a l  c o r r e l a t i o n s ,  For the  case o f  cut-off p o t e n t i a l s  and arbi-  

t r a r y  i n i t i a l  velocqty c l i s t r i l p t i o n  func t ions ,  on using the expansion 

parameter nr3$, wi th  n = p a r t i c l e  densi ty  and ro = range of binary poten- 

t i d ,  w e  show f o r  terms of the  order  (pr?)* and 1Qwer t h a t  t he  hierarchy 

is formally se l f -c los ing  even with the  inc lus ion  of mgny body e f f e c t s ;  i,e,, 

0 

a t  a given order in 

t he  s i n g l e  p a r t i c l e  d i s t r i b u t i o n  funct ion of the  same w d e r ,  t he  binary 

Correrat ion func t ion  which, deteymines the  k i n e t i c  behavior of the  s i n g l e  

(nr’], wi th  $he expeption of contr ibut ions l i n e a r  i n  
0 

p a r t i c l e  d i s t r i b u t i o n  func t ion  only depends on funct ions which themselves 

f u l l y  determinable wi th in  a prescr tbed i t e r a t l o n  procedure. 

vergence of $he var ious orders  of t h e  formal expansian is discussed f o r  

The a c t u a l  con- 

i v i t i a l l y  a r i b t r a r y  ve loc i ty  dlls t r i bu t ions  and f o r  l i n e a r i z a t i o n s  around 

Maxwellian ve loc i ty  q l s t r i b u t i o n s .  I 



a 

t he  BBCKY hierarchy i n  the  Boltzmann approximation' takes the  form: 

The equations are i n  dimensionless u n i t s  with digtances i n  u n i t s  of ro, the  

range of t he  binary i n t e r a c t i o n  and v e l o c i t i e s  i n  u n i t s  of 

mean square; p a r t i c l e  ve loc i ty ;  therefore  times are I n  un i f s  of 

t i m e  of a b h a r y  i n t e r a c t i o n ,  

vav t h e  r o o t  

ro/vav, the  

Equations (1) hqve been obtained from the  general  hierarchy equa- 

- t i ons  by choosing <O>/mviv n, l ,  wi th  (4) the  c h a r a c t e r i s t i c  s t r eng th  of 

the  p o t e n t i a l ,  and nro - E , The gs a re  defined i n  a recurs ive  

mapner from the reduced d i s t r i b u t i o n  funceions , 

3 

f s  , by the  r e l a t i o n s  : 

Expansion procedure 

scale procedure2 amended t o  allow f o r  add i t iona l  many space scale va r i a t ions .  

Our expansion procedure is a vers ion  of the  many Cipe 

We assume 
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4 

from the  m = 3 equation. Therefore i n  p l a w  o f  $he basic h ie rwchy  for 

m 3, 1 we qan write a mut i la ted  hierarchy af the form 

For 

wi th  A ' ( s , m )  

Determination- 

s f i l l  t o  be spec i f ied .  

& On using equation (I") fa r  m = 0 f o r  a t i m e  T 0 

order  un i ty  (T 2 collision durat ion)  we hwv for  ( X ~ , ~ + ~ I  F r0 

and 

O f  

(3) 0 0 rJ + 611 c ei ,s+l - - Hs+l * R* -b %+l 

then 410 and 611 are zero. There are no secular contributions involving 

terms in and 6Ll ,  since these are only non-zsro %or times o l  order 

un i ty  . 
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By means of (3) and (2), t he  r i g h t  hand s i d e  of (2") f o r  m = 1 

can be  put: i n  the: f o p  

with  

I 

. .  

sfl 

0 0 
-Hs+l= 0 

Q -%+IT - J e Hs+l k i p  S.t.1 
I 

(witb tbs addi t ion  of terms of order  E) 
a The terms l i n e a r  ie Hs and Hsal 

cont r ibu te  t o  a t o t a l  des iva t lve  with respec t  t o  t i m e  of quant i ty  of order  

unicy, The terns l i n e a r  i n  vs+l - v ( 5  v F 
can be put  i n  the  form 

.) have a cont r ibu t ion  which s+l,1 

with  
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with das+l denoting a surfgce element. As long as a l l  of t he  s p a r t i c l e s  

i n  the  c o l l e c t i o n  (1, 2 ,. . ,s) are f u r t h e r  apa r t  than d is tance  of order  

un i ty ,  61 = 0. It has  been shown earlier3 f o r  g1 t o  be 'bounded t h a t  ong 2 S 

m u s t  take: 

0 
ps. This completes the  d e f i n i t i o n  of 

Defeminat ion  of .& general Within the  m = 2 equations of (1") f o r  

I J x i  , s+1 

1 

r b  w e  have as i n  the  cage of t he  m = 1 equations: 

-t- 6 ( i , s + l ;  l ,* .* , s+l ,  t )  . 20 

For the  p a r t i c l e s  ( l , * . . , s )  f a r  apa r t  w e  assume t h a t  620 i s  small com- 

pared t o  the  terms lPnear i n  e '+lT. This has been v e r i f i e d  i n  some 

deqa i l  f o r  s = 1, 2 and 3 ,  

order  t o r  x-' compared t o  the  t e r m s  l i n e a r  i n  e 

0 -H 

where one f inds  t h a t  620 i s  c h a r a c t e r t s t i c a l l y  of 

0 

(Here and S + P  
-H -1 
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6: i=1 J 

+ E  
i=l 

afterward x i s  taken t o  be t h e  minimum i n t e r p a r t i c l e  separa t ion  of the  s 

p a r t i c l e s , )  

The terms, excluding A(s,m) + ~ ~ ( s , m + l ) ,  on the  right; hand side 

of (1") f o r  m = 2 can therefore  be wr i t t en :  

0 
a e -Hs+lT 

( V s + p i )  - 
axs+l h, s+l 0 

0 

e .  
i7-, 

-Hs+lT 0 
%+l 

0 
H6+lT 

x ( I 2 ~ i , S + 1 , l , . ~ . ~ S , t )  + e 620) dSls+l 

w i t h  

By coupling the  arguments following ( 4 )  with considerat ions which put  t he  

i n t e g r a l  term i n  Eq. (1") f o r  m = 1 of order  t o r  x-' compared with -1 

one f inds  chat t h e  dominant terms i n  ( 6 )  are l i n e a r  i n  gb ' 

The cont r ibu t ion  from (8) wi th in  ( 6 )  may be put  i n  the  form 

A(s, l )  + B ( s , l )  + C(S,l)  + 622 
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w i t h  

A(s,l) = - 
i= l 

0 1 I d3 "si-1 dasi-l IVsi-l,$ I 'gl(s+l> g,W 

s*li =ro 'xi 9 si-1 1 1 -v f y si-1 I 

0 
-Hs+lT 

d3 "si-1 dasi-l I"s+l,i I .  
I Xi, s+l I =ro $Xi, si-l 1 1  vi, 94-1 
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-1 The t e r m  i n  6- is 0;f O P & ~  t . o r  x-' compared t o  A + B. The term 

l inear  i n  

cor rec t ion  

We 

t i o n  with 

LL 

0 1  gs gl (s+l) evaluated 

t o  g: which w e  w t l l  

are f r e e  t o  "promote" 

m = 1; s ince  i t  leads 

a t  x i ,s+l 1 1  -?,s+l y ie lds  a higher  order  

neglec t  

t he  A ( s  ,1) term t o  the  lower order  equa- 

t o  exponential  damping and does no t  r e s u l t  

i n  ;M e s s e n t i a l l y  more complicated equat ion t o  so lve ,  w e  do so. 

w e  have f o r  (1") wi th  m 2 2,  s 2 2: 

Therefore 

A'(s ,2)  = - A ( s , l )  9 A"(s,2) 

The t e r m  i n  A" contains terms which i f  they were pot "promoted" would lead 

t o  divergent  behavior i n  

values obtained for g1 on the  omission of the term i n  E A ( s , ~ ) ~  

Such terms can be est imated by usage of the  gS 

s 

For s = 2 ,  B(s , l )  is  of order  1x121-l f o r  Ix121>:1. Consequently 

the  cont r ibu t ion  t o  g i  through (1") i s  logarithmic.  Therefore w e  write 

1 1 1 
g2 = (g2I1 + (g2I2 

1 
and'"promote" the  terms wi th in  B(2,l)  l i n e a r  in .  (g,),. For s = 3 the  con- 

t r i b u t i o n  t o  g2 i s  f i n i t e  ( a t  l e a s t  as concerns x, v arguments which 

u l t imate ly  cont r ibu te  t o  g f o r  Ix121 C ro) .  Hence w e  do no t  l'promQte" 

3 

2 

B(3, l ) .  For 

f o r  B ( 3 , l ) .  

Hence 

(subjec t  t o  a 

s 2 4 w e  assume t h a t  the  conclusion f o r  B(s , l )  i s  the  same as 

1 

1 1 
t he  so lu t ion  f o r  gs, s 2 3 

knowledge of g1 and g2 )o  

i s  a matter of simple i t e r a t i o n  
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Solut ion for g: & p a r t i c u l a r  For g1 we have from (1"): 2 



We w r i t e  

with: 

= B ( 2 , O )  
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The term [ R ( 2 , 0 )  - A(2,O) -B(2,P.)3 f a l l s  off  with increas ing  1 x12 I 
more rap id ly  than, \x12 }-2. Consequently (g2& 1 1 does not  copt r ibu te  t o  

2 s ecu la r  behavior i n  (g,). The term B(2,O) va r i e s  with increas ing  Ix121 

. ConsequeDtly the  r i g h t  hand s i d e  of (13) i s  of the  order 

and t h e  r i g h t  hand s i d e  of 

-1 1 -1 
(14) i s  of order  E an(61x121) f o r  

IxI21 E from which (g,) Y is of order  E f o r  1xl21 E 

1 and (g2)y are of the  form 1 For EX >> 1 one has t h a t  both (g2)pjl 
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with  a pos i t i ve ,  of order  un i ty ,  and bounded from below. - a E X  E;e 

Determination of gs _and g2 & p a r t i c u l a r  W e  now tu rn  t o  the  detennina- 2 2 

2 t i o n  of g The r i g h t  hand s i d e  of (1") f o r  m = 3 can be w r i t t e n ,  analog- 

ously t o  ( 6 )  and (7 ) :  

S 

0 0 
-Hs+l+ 0 

H,+l e 
-'sf'' - ! J e 

I x i  p s + l  I <  ro f=l lxi,s+p 
E. is1 E J  

I 

-Hs+lT 

O I  axs+l -Hs+lT+ i=l J ] x  i , s + l l < f o  

0 

%1 e e 
a 

( V s + p i )  - + ! J  
i=1 Ixi,s+ll<'o 

0 
Hs*lr 

'30) dns+l x (I ( i , s + l , l , a . , e , s s t )  + e 
3 (15) 

wi th  

2 One may f i r s t  ca l cu la t e  t he  various g s ( t  - r) without the  contr i -  

but ions A'(s,3) and then determine the r e s u l t i n g  cor rec t ions  from the  

A' (s  ,3). For s = 3, at least as concerns which cont r ibu tes  d i r e c t l y  83 

0 
a e -H3T . g3(t-.r> 2 t o  g2 f o r  Ix12 I < to, the  term i n  v3% * 

2 does not cont r ibu te  t o  g i n  order  E o r  lower. W e  assume t h a t  t he  

i t e r a t i o n  with A ' ( S  b3) does not  decrease the  order of g2 and w e  take the  

2 

3' 
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s i z e  of t h i s  term as rep resen ta t ive  of t he  s i z e  of o the r  terms i volving 

g3 ( t  - T) wi th in  (15)- Also we take t h e  cont r ibu t ion  from s = 3 t o  be 

f 
2 

a bound on the  contr ibut ions from s 2 4 ,  s o  t h a t  these  too can be  neglected 

2 i n  f inding g2 t o  order  E f o r  Ix121 < r . 
0 

1 For A'(2,3) w e  note  t h a t  due t o  the  presence of (g2IY one expects 

t h a t  ope may w r i t e  

wi th  g 2 p  

a time scale of order  t he  mean f r e e  time. 

of order  un i ty  on a length scale of order  the  mean free path and 

Correspondingly w e  have 

and 

, 



w e  note  t h a t  the equation is  of t h e  form: For g 4 2  

S decreases s u f f i c i e n t l y  rap id ly  with increasing 

1 2 is obtained sub jec t  t o  a knowledge of g and g l i2 ,  1 the  so lu t ion  f o r  g 2 f z ,  

IxI2 1 - t h a t  t o  order  un i ty  

2 

Discuseion of Eq,  (1%) and comments on the  genera l  s t r u c t u r e  v 

Equation (12’) treats the many body e f f e c t s  whose exis tence has been 

previously noted by o the r  authors 4’5y6y70 

e n t i r e l y  unexpected sinee the  binear-y co r re l a t ion  funct ion as d is tances  of 

order the  mean free path i n  general  is of order  

of the binary c o r r e l a t i o n  funct ion in order  h i @ e r  than 

The behavior Sn Eqo (1%) f s  no t  

2 E One expects t h a t  parts 

c2 w i l l  have equa- 

t i o n ~  whose homogeneous p a r t s  are s i m i l a r  in form t o  the  l e f t  hand s i d e  of 

( l a ) ,  Since the co r re l a t ion  func t ion  f o r  n bodies a t  d is tances  of order  

the mean free path from each o the r  i s  i n  general  of order  

higher ,  parr of t h e  

and 

n body co r re l a t ion  funct ion w i l l  s a t i s f y  an integro- 

d i f f e r e n t i a l  equation whose homogeneous terns are acted on by the operator  



with ~ ( i ~ n 4 - 1 )  exchanging the  l abe l s  i and n+l. 

__c- Form 5f s i n g l e  particle d i s t r i b u t i o n  funct ion 

The s i n g l e  p a r t i c l e  d i s t r i b u t i o n  funct ion g is  a f  t he  f o m  1 

0 2 1 2 2  
11 =+ E 81 g1 = g1 =+ Lgl =+ E Rn Eg 10 

and g: of order  un i tyo  Its behavior f o r  a11 t i m e s  fi, 0 1  
with 81’ ggo’ g11 

given by the  equations: 
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He re 

S(x) = 1, x > 0 

S(x) = 0 ,  x < 0 

and the  operators  Pi 

t i ons  f d l l m i n g  them. 

denote the ex is tence  of cont r ibu t ions  from the  func- 

Equation (20) is  the  Boltzmann equation. Equations (22) and (24) are 

l inea r i zed  s p a t i a l l y  homogeneous Boltzmann. equations with known source terms, 

i s  given by 
2 I1 From Eq. (25) the  behavior due t o  g 

ag’l 11 - -  - 0  a t  (26) 

The form 111’ i s  independent of g 
211 

Within (271, t he  t e r m  i n  g 

of (27) follows from the  f a c t  t h a t  the  inhomogeneous i n t e g r a l  terms i n  (17) 

are o f  order  E. 

2 Descr ipt ion of t he  asymptotic t i m e  behavior of &1 t o  order F- 

I f  t h e  dev ia t ion  of go1 from i t s  asymptotic value i n  t i m e  approaches 

and g l  - gill approach 1 1  
10’ 811 zero exponent ia l ly  o r  more r ap id ly ,  then g 

t h e i r  asymptotic values exponent ia l ly .  However, a normal mode8” ana lys i s  o f  

(17) and (27) revea ls  t h a t  

a lgeb ra i ca l ly  as t m3I2 f o r  t >> I, 

g2 may i n  p r i n c i p l e  approach i t s  asymptotic value 
111 



I f  the  devia t ion  of go 1 from i t s  asymptotic value approaches zero 

less rap id ly  than exponent ia l ly ,  then i n  general  one cannot even conclude 

1 2 t h a t  gl0 and g1 approach l i m i t s .  

1 1  remain bounded However, provided g 

a s u f f i c i e n t l y  long t i m e ,  l i n e a r i z e  (20) i n  the  devia t ions  of 

10' g l l  and 81 11 one can, a f t e r  

go1 from its 

asymptotic Maxwellian v e l w i t y  form, 

cut-off potentials!' i t  appears t h a t  the devia t ion  of 

value decays exponent ia l ly  i n  t i m e  and t h e  corresponding conclusions as t o  

Then, f o r  cut-off .Maxwellian or "harder" 

from i t s  asymptotic go 1 
I 

follow. 1 1 2  2 
g lo '  811' 81 - gill and gill 

F ina l ly  f o r  t he  po ten t i a l s  j u s t  mentioned, i f  go1 has a constant 

s m a l l  dev ia t ion  from t h e  Maxwellian ve loc i ty  d i s t r i b u t i o n  and one l i n e a r i z e s  

i n  t h i s  small devia t ion ,  the cont r ibu t ion  from those modes which y i e l d  pre- 

vious t -3'2 cont r ibu t ion  i s  f i n i t e  e 
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